Aumeistere, L., Ciproviča, I., Zavadska, D., Bavrins, K., & Borisova, A. (2018). Zinc Content in Breast Milk and Its Association with Maternal Diet. Nutrients, 10(10), 1438.

Austin C., Smith TM, Bradman A,. Hinde K, Joannes-Boyau R., Bishop D., Hare D. J., Doble P, Eskenazi B, Arora M (2013). Barium distributions in teeth reveal early-life dietary transitions in primates. Nat, 498, 216–219.

Austin C., Smith T.M., Farahani R.M.Z., Hinde K., Carter E.A. , Lee J., Lay P.A., Kennedy B.J., Sarrafpour B., Wright R.J., Wright R.O., Arora M. (2016). Uncovering system-specific stress signatures in primate teeth with multimodal imaging. Sci. Rep., 6, p. 18802, 10.1038/srep18802

Bădescu I., Watts D..P, Curteanu C,. Desrulle K.J., Sellen D.W. (2022). Effects of infant age and sex, and maternal parity on the interaction of lactation with infant feeding development in chimpanzees. Pols one. journal.pone.0272139

Behie A.M., Miszkiewicz J.J. (2019). Enamel neonatal line thickness in deciduous teeth of Australian children from known maternal health and pregnancy conditions. Early Human Development. Volume 137, 104821

Björklund K.L., Vahter M., Palm B. et al. (2012). Metals and trace element concentrations in breast milk of first time healthy mothers: a biological monitoring study. Environ Health 11, 92.–069X-11–92

Castiblanco-Rubio G.A., Martinez-Mier E.A. (2022): Fluoride Metabolism in Pregnant Women: A Narrative Review of the Literature. Metabolites. 2022 Apr; 12(4): 324. doi: 10.3390/metabo12040324. 9032535/

Dantas E.L.A., Figueiredo T. de, Macedo-Ribeiro N., Oliezer R.S., Gerlach R.F., Sousa F.B. (2020). Variation in mineral, organic, and water volumes at the neonatal line and in pre- and postnatal enamel. Variation in mineral, organic, and water volumes at the neonatal line and in pre- and postnatal ename. 996920302284

Davis, F. M., Janoshazi, A., Janardhan K. S., Steinckwich, N., D’Agostin, D. M., Petranka, J. G., Desai, P. N., Roberts-Thomson S. J., Bird G. S., Tucker D. K., Fenton S. E., Feske S., Monteith G. R., & Putney J. W., Jr (2015). Essential role of Orai1 store-operated calcium channels in lactation. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5827–5832. pnas.1502264112

Dean M.C., Spiers K.M.., Garrevoet J. (2019). Synchrotron X-ray fluorescence mapping of Ca, Sr and Zn at the neonatal line in human deciduous teeth reflects changing perinatal physiology. Archives of Oral Biology. Volume 104, 90–102.

Dror D.K., Allen L.H. (2018). Overview of Nutrients in Human Milk. Advances in Nutrition, Volume 9, Issue suppl_1, 278S–294S,

Eli D., Sarnat H., Eliezer Talmi E. (1989). Effect of the birth process on the neonatal line in primary tooth enamel. Pediatric Dentistry. The American Academy of Pediatric Dentistry, Volume 11, Number 3.–03.pdf

Geddes D., Kakulas F. (2021). Muttermilch: bioactive Komponenten und ihre Auswirkungen auf den Säugling und darüber hinaus. In: Familie Larsson-Rosenquist Stiftung: Stillen und Muttermilch – von den biochemischen Grundlagen bis zur gesellschaftlichen Wirkung. Thieme-Verlag. Stuttgart.

Hasset B. R,. Dean MC, Ring S., Atkinson C., Ness A.R., Humphrey L. (2020). Effects of maternal, gestational, and perinatal variables on neonatal line width observed in a modern UK birth cohort. 10.1002/ajpa.24042.

Hurnanen J., Visnapuu V., Sillanpää M., Löyttyniemi E. (2017). Deciduous neonatal line: Width is associated with duration of delivery. Forensic Science International. Volume 271, February 2017, Pages 87–91.

Jin J., Yang T., Xin K., Wang G., Jin X., Zhou M., Frenking G. (2018). Octacarbonyl Anion Complexes of Group Three Transition Metals [TM(CO)8]−- (TM=Sc, Y, La) and the 18-Electron Rule.

Janardhanan M., Umadethan B., Biniraj K., Kumar R.V., Rakesh S. (2011). Neonatal line as a linear evidence of live birth: Estimation of postnatal survival of a new born from primary tooth germs. J Forensic Dent Sci. 2011 Jan;3(1):8–13. doi: 10.4103/0975–1475.85284

Kierdorf H., Witzel C., Bocaege E, Richter T., Kierdorf U. (2020). Assessment of physiological disturbances during pre- and early postnatal development based on microscopic analysis of human deciduous teeth from the Late Epipaleolithic site of Shubayqa 1 (Jordan).

Kresse R., Baudis U., Jäger P., Riechers H. H., Wagner H., Winkler J., Wolf H. U. (2007). Barium and Barium Compounds. In: Ullmann’s Encyclopedia of Industrial Chemistry. 6. Auflage, 14356007.a03_325.pub2

Kurek M., Zadzinska E., Sitek A., Borowska-Struginska B., Rosset I., Lorkiewicz W. (2014). Prenatal factors associated with the neonatal line thickness in human deciduous incisors. HOMO – Journal of Comparative Human Biology. 2014.11.001.

Lynch R. J. (2011). Zinc in the mouth, its interactions with dental enamel and possible effects on caries; a review of the literature. International dental journal, 61 Suppl 3(Suppl 3), 46–54.–595X.2011.00049.x

Nava A., Lugli , Romandini M., Badino F., Evans D., Helbling A. H., Oxilia G., Arrighi S., Bortolini E., Delpiano D., Duches R., Figus C., Livraghi A., Marciani G. (2020). Early life of Neanderthals. Proceedings of the National Academy of Sciences. 2.11.2020.

Smith T. M. (2013). Teeth and human life-history evolution. Annu. Rev. Anthropol., 42, 191–208.

Smith T. M. (2018). The Tales Teeth Tell: Development, Evolution, Behavior. MIT Press, Cambridge.

Smith T., Cook L., Dirks W., Green D. R., Austin C. (2021). Teeth reveal juvenile diet, health and neurotoxicant exposure retrospectively: What biological rhythms and chemical records tell us.

Smith T. M., Austin C., Ávila N. A., Dirks W., Green D. R., Williams I. S., Aroro M. (2022). Permanent signatures of birth and nursing initiation are chemically recorded in teeth. j.jas.2022.105564.

Tacail T., Martin J. E., Arnaud-Godet F., Thackeray J. F., Cerling T. E. , Braga J., Balter V. (2019). Calcium isotopic patterns in enamel reflect different nursing behaviors among South African early hominins. Science Advances. 28 Aug Vol 5, Issue 8. DOI: 10.1126/sciadv.aax3250.

Tihtonen K., Korhonen P., Isojärvi J., Ojala R., Ashorn U., Ashorn P., Tammela O. (2022). Calcium supplementation during pregnancy and maternal and offspring bone health: a systematic review and meta-analysis. Annals of the New York Academy of Sciences, 1509, 1, 23–36.

Vahidinia A., Samiee F., Faramal J., Rahmani A., Javad M. T., Leili M. (2019). Mercury, Lead, Cadmium, and Barium Levels in Human Breast Milk and Factors Affecting Their Concentrations in Hamadan, Iran. Biol Trace Elem Res. Jan;187(1):32–40. doi: 10.1007/ s12011–018–1355–5

Varghese N. S., Arthanari A., Subramanian E. M. G. (2022). Neonatal line: Importance in Birth Identification. Journal of Coastal Life Medicine, 10, 169. – Retrieved from

World Health Organization (1989). Minor and trace elements in breast milk. Report of a Joint WHO/IAEA Collaborative Study, World Health Organization, Genf.

Witzel, C. (2014). Inkrementelle Strukturen im Schmelz der Milchzähne. Rechtsmedizin 24, 165–171).–014– 0951–8. 10.1007/s00194–014–0951–8

Wu X., Zhao L. et al (2018). Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals. Science 31 Aug: Vol. 361, Issue 6405, pp. 912–916; DOI: 10.1126/science.aau0839.

« Zurück zum Artikel